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What types of QoS guarantees are useful to 
HEC application scientists (esp. at exascale)?

• Isolation / virtualization of storage performance

• Guaranteed 
• Checkpoint performance

• Data capture

• Performance under varying workloads

• Performance under concurrent workloads

• Performance under failure

• Performance for viz

• What guarantees: throughput & latency



What is the relationship between QoS 
infrastructure and other job scheduling 
infrastructure (e.g., batch schedulers, MapReduce 
scheduling)?

• Very close relationship

• QoS requirements must inform all system 
schedulers

• Only possible if 
• Each resource is well understood

• Requirements are well understood

• Simplifying principles are found and used



Is the ratio of funded to productized work in QoS 
lower than in other areas?  Yes.  If so, why?

• New area—focus has traditionally been on 
performance, performance, and performance

• Hard and requires new ways of thinking

• Crosscutting: storage, real-time, distributed 
systems, networking, scheduling, ...

• Enabled by excess processor capacity

• Needed by cloud computing and virtualization

• Starting to make it into commercial products

• More on the horizon...



Challenges   

• Legacy (intransigent) applications and users

• Scaling—aggregate management

• Crossing the threshold to usability

• Varied resources, applications, workloads

• Interference between I/O streams

• System management tasks



Distributed systems need performance 
guarantees

• Many systems and applications want I/O performance 
guarantees
• Multimedia, high-performance simulation, transaction processing, 

virtual machines, cloud services, service level agreements, real-
time data capture, sensor networks, ... system tasks like backup 
and recovery ... even so-called best-effort applications

• Providing guarantees is difficult
• Interacting resources, dynamic workloads, interference among 

workloads, non-commensurable metrics

• Needs
1. Guaranteed performance

2. Isolation between workloads

3. High performance



In a nutshell

• Big distributed systems
• Serve many users/jobs

• Process petabytes of 
data

• Data center design
• Use rules of thumb

• Over-provision

• Isolate

• Ad hoc per formance management 
approaches creates expensive and marginal 
solutions

• A better system guarantees each user the 
performance they need from the CPUs, 
memory, disks, and network
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1. A uniform model for 
performance management
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3. Integrate the solutions



Achieving robust guaranteeable resources

• Goal: Unified resource management algorithms 
capable of providing
• Good performance

• Arbitrarily hard or soft performance guarantees with
• Arbitrary resource allocations

• Arbitrary timing / granularity

• Complete isolation between workloads 

• All resources: CPU, disk, network, server cache, client 
cache

➡Virtual resources indistinguishable from “real” 
resources with fractional performance



Isolation is key

• CPU
• 20% of a 3 Ghz CPU should be indistinguishable 

from a 600 Mhz CPU

• Running: compiler, editor, audio, video

• Disk
• 20% of a disk with 100 MB/second bandwidth 

should be indistinguishable from a disk with 20 
MB/second bandwidth

• Serving:1 stream, n streams, sequential, random



Scott’s epistemology of virtualization

• Virtual Machines and LUNs provide good HW 
virtualization

• Question: Given perfect HW virtualization, how 
can a process tell the difference between a virtual 
resource and a real resource?

• Answer: By not getting its share of the 
resource when it needs it



Observation

• Resource management consists of two 
distinct decisions
• Resource Allocation: How much resources to 

allocate?
• Dispatching: When to provide the allocated 

resources?

• Most resource managers conflate them
• Best-effort, proportional-share, real-time



The resource allocation/dispatching 
(RAD) scheduling model
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Dispatcher
Series of 
jobs w/

budgets and 
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Share of 
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Times at 
which allocation 
must equal share

Process



Adapting RAD to disk, network, and buffer cache

• Fahrrad—Guaranteed disk request 
scheduling
Anna Povzner

• RADoN—Guaranteeing storage 
network performance
Andrew Shewmaker

• Radium—Buffer management for I/O 
guarantees
Roberto Pineiro

• Horizon—I/O management for 
distributed storage systems
Anna Povzner

Disk



Guaranteed disk request scheduling

• Goals
• Hard and soft performance guarantees

• Isolation between I/O streams

• Good I/O performance

• Challenging because disk I/O is:
• Stateful

• Non-deterministic

• Non-preemptable, and

• Best- and worst-case times vary by 3–4 orders of 
magnitude



Fahrrad

• Manages disk time instead 
of disk throughput

• Adapts RAD/RBED to 
disk I/O

• Reorders aggressively to 
provide good 
performance, without 
violating guarantees

A B C BE 

Disk 

I/O streams 

Fahrrad 

Anna Povzner, Tim Kaldewey, Scott A. Brandt, Richard Golding, Theodore Wong, and Carlos 
Maltzahn, ”Efficient Guaranteed Disk Request Scheduling with Fahrrad”, Eurosys 2008.



Fahrrad outperforms Ext2/3

• Workload
• Media 1: 400 sequential I/Os per second (20%)

• Media 2: 800 sequential I/Os per second, (40%)

• Transaction: short bursts of random I/Os at random times (30%)

• Background: random (10%)

• Result: Better isolation AND better throughput

Linux Linux w/Fahrrad



Fahrrad virtual disks

• Provide workload-independent performance 
guarantees

• Isolate from other workloads concurrently 
accessing the device

• LUNs virtualize 
storage capacity

• Fahrrad virtualizes 
storage performance



Fahrrad virtual disks

• Implemented with the Fahrrad real-time I/O 
scheduler

• Guarantee reserved and isolated share of the 
time on storage device
• Hard guarantees on performance isolation 

• Virtual disk throughput same as equivalent 
standalone throughput

• Amount of data transferred:
• ∀i,  Di(x%, t)   =   Di(100%, x%·t)

Share of
disk

Time Share of
disk

Time



Ensuring isolation

• Virtual disk reservation: disk share (utilization) 
and time granularity (period) 
• Account for all extra (inter-stream) seeks

• Reserve overhead utilization to do them

• Charge each I/O stream for all of the time it uses, 
including inter- and intra-stream seeks

• Reservation =  Disk Share + Overhead utilization

  

25%, 1 sec

30%, 250 ms 

19%, 1 min

Disk time



• Throughput is fully determined by reservation & workload

• Virtual disk are completely isolated from each other

Each virtual disk 
reserves 20% 
with 1 second 

granularity
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Guaranteeing latency

• Latency is bounded by deadlines
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Fahrrad virtual disks work

• Fahrrad Virtual Disks provide Cello99 and OpenMail performance 
very close to standalone

• Cello99 and OpenMail virtual disks share the system with random background stream.
•

Time

Fahrrad Virtual Disks
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Guaranteeing storage network performance

• Goals
• Hard and soft performance guarantees

• Isolation between I/O streams

• Good I/O performance

• Challenging because network I/O is:
• Distributed

• Non-deterministic (due to collisions or switch 
queue overflows)

• Non-preemptable

• Assumption: closed network
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What we have

• Switched fat tree w/full bisection bandwidth

• Issue 1: Capacity of shared links

• Issue 2: Switch queue contention



Congestion in a simple switch model

• Each transmit port 
on the switch is a 
collision domain

tx/rx 
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FIFO
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Congestion in a simple switch model

• One of the packets 
arriving at the 
same switch 
transmit port is 
delayed on the 
queue

switch fabric
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Congestion in a simple switch model

• Delayed packets 
from unrelated 
streams affect each 
other on the 
queue

switch fabric
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RADoN

• Each reservation has a network share (utilization) 
and a time granularity (period)

now deadline
laxity

release
Tim Kaldewey, Andrew Shewmaker, Carlos Maltzahn, Theodore Wong, and Scott Brandt, 
”RADoN: QoS in Storage Networks”, WIP Session of FAST 2008.

• Flow control: throttle senders

• Execution time (per period) e = 
utilization / period

• Budget in packets m = e / 
packets_per_second

• Congestion control: avoid switch 
contention by adjusting wait time 
between packets

• Percent budget %budget = (1 - 
%laxity) = e/(d-t)

• Packet wait time w = wmin / %budget

• Size change w∆ = -|wi - wmin|/2

• New wait time wi+1 = min(wmax, 
max(wmin, w∆))



Buffer management for I/O guarantees

• Goals
• Hard and soft performance guarantees

• Isolation between I/O streams

• Improved I/O performance

• Challenging because:
• Buffer is space-shared rather than time-shared

• Space limits time guarantees

• Best- and worst-case are opposite of disk

• Buffering affects performance in non-obvious ways

Disk



Buffering roles in storage servers

• Decoupling
• Allows sender and receiver to operate 

asynchronously

• Speed matching
• Allows slower and faster devices to communicate

• Traffic shaping
• Shapes traffic to optimize performance of 

interfacing devices

Disk



Radium

• I/O into and out of buffer have 
rates and time granularities 
(periods)

• Partition buffer space based on I/
O characteristics and 
performance requirements

• Cache policies enhance 
performance within constraints 
determined by I/O requirements
• Use slack to prefetch reads and 

delay writes

Disk

App 1

Disk Scheduler

Buffer-Cache

Disk

App 2 App 3

Roberto Pineiro, Kleoni Iouannidou, Carlos Maltzahn, and Scott Brandt, “RAD-FLOWS: 
Buffering for Predictable Communication,” RTAS 2011



Managing combined workloads
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Horizon

• Big storage systems are shared, have many disks, and 
application workloads compete and interfere

• Real distributed systems have
• Different data layouts

• Multiple data entry points

• Different data paths

• Horizon goals
• Meet performance targets

• Fully utilize system resources

• Not rely on reservations

• Decentralized solution

Anna Povzner, Darren Sawyer, Scott A. Brandt, ”Horizon: Efficient Deadline-Driven Disk I/O 
Management for Distributed Storage Systems,” HPDC 2010. Best Paper



Multi-layered approach

• Workloads specify 
performance targets
• Throughput and latency

• Upper layer control 
mechanism
• Throughput limiting

• Deadline assignment based 
on throughput and latency 
targets

• Low-level disk schedulers
• Meet individual request 

deadlines

Throughput limiting

Deadline assignment

Disk schedulers

Deadline: time that 
a request must 

complete in order to 
meet its 

performance target

I/Os tagged
w/deadlines



Horizon disk scheduling

• Manage I/O in terms of 
disk time

• Estimate service times 
based on service time 
measurements

• Reorder requests 
within “slack time” 
before earliest 
deadline

• Adjust based on 
optimizations, 
overload, latency



Horizon disk scheduling

• Horizon set to earliest deadline

• Reordering set = everything that 
will fit before horizon

• Execution times measured as 
requests complete

• Optimizations
• Squeeze in more sequential I/Os

• Use optimistic estimates

• Increase reordering set (esp. under 
overload)

• Increase device queue
• Larger = better performance

• Smaller = tighter deadlines



Horizon in use
• Implemented in NetApp’s Data ONTAP (data from FAS3040)

• Performance targets associated with volumes
• Control mechanism at FS entry point

• Schedulers between RAID and disks



Horizon in use
• Implemented in NetApp’s Data ONTAP (data from FAS3040)

• Performance targets associated with volumes
• Control mechanism at FS entry point

• Schedulers between RAID and disks

Thoughput
targets met

> 92% of latency
targets met



Conclusion

• I/O performance management is needed, 
challenging, and feasible
• Many separate elements are involved
• A unified approach is ideal

• RAD is the basis for a unified solution
• CPU, disk, network, buffer cache, system

• It is in use in a commercial storage system

• More in the works


